Last edited by Kazrazshura
Monday, October 12, 2020 | History

3 edition of Electron Transport in Single Molecular Wires found in the catalog.

Electron Transport in Single Molecular Wires

Sander J. Tans

Electron Transport in Single Molecular Wires

by Sander J. Tans

  • 166 Want to read
  • 30 Currently reading

Published by Delft Univ Pr .
Written in English

    Subjects:
  • Science/Mathematics

  • The Physical Object
    FormatPaperback
    Number of Pages118
    ID Numbers
    Open LibraryOL12803556M
    ISBN 109040716544
    ISBN 109789040716546
    OCLC/WorldCa40160124

    To date, single electron transport behavior has been observed from many different nanostructures. They include metallic nanoparticles[27], semiconductor heterostructures [28, 29], carbon nanotubes[30, 31] and semiconducting nanocrystals[8]. More recently, similar behaviors were observed from devices made from single molecules[].   How a single molecule or an ordered network of molecules (1–7) can perform transport (8, 9) or a computation using mechanical (), magnetic (), or electronic degrees of freedom is becoming an active field of research, after the first suggestive ideas of the s (13, 14).Use of electronic and nuclear molecular degrees of freedom to create a device function embedded inside a unique molecule.

      Measurement of voltage-dependent electronic transport across amine-linked single-molecular-wire junctions. J R Widawsky 1,2, M Kamenetska 1,2, J Klare 2,3, C Nuckolls 2,3, M L Steigerwald 3, M S Hybertsen 4 and L Venkataraman 1,2. Published 2 October • IOP Publishing Ltd Nanotechnology, Vol Number We report a first-principles study of quantum transport in a prototype two-terminal device consisting of a molecular nanowire acting as an inter-connect between two gold electrodes. The wire is composed of a series of bicyclo[]pentane (BCP) cage-units. The length of the wire (L) is increased by sequentially increasing the number of BCP cage units in the wire from 1 to 3.

      Using a first principles approach, we study the electron transport properties of two molecules of length $\phantom{\rule{em}{0ex}}\mathrm{nm}$, which are the building blocks for a new class of molecular wires containing fluorenone units. We show that the presence of side groups attached to these units leads to Fano resonances close to the Fermi energy. (2) V d is slowed down to pm/s just before the transition from ballistic to tunneling electron transport occurs, whereat the electrical conductance through a monovalent metal contact reaches a level around conductance quantum G 0 = 2 e 2 /h, where e is the charge on an electron and h is Planck constant. At this point, the Au contact was.


Share this book
You might also like
romance of the law merchant

romance of the law merchant

Heart of the faithful

Heart of the faithful

Blood justice

Blood justice

book of people

book of people

Guidelines for recreational vehicle campgrounds.

Guidelines for recreational vehicle campgrounds.

Woodbine

Woodbine

The comments of Juniper

The comments of Juniper

Confessions of a Teenage Baboon

Confessions of a Teenage Baboon

Japan, past and present.

Japan, past and present.

Forest economics and finance.

Forest economics and finance.

A.R.R.L. antenna book.

A.R.R.L. antenna book.

Greenlanders, whales and whaling

Greenlanders, whales and whaling

Shaping a National Culture

Shaping a National Culture

Andrew Jackson and the Constitution

Andrew Jackson and the Constitution

KITAGAWA INDUSTRIES CO., LTD.

KITAGAWA INDUSTRIES CO., LTD.

Our todays and yesterdays

Our todays and yesterdays

Electron Transport in Single Molecular Wires by Sander J. Tans Download PDF EPUB FB2

Electron transport through single molecular wires functional theory code SIESTA [7], combined with a super cell approach. We use the local density approximation as parameterised by Perdue and Zinger [8], non-local norm-conserving pseudopotentials [9], and valence electrons described by a single.

Electron transport through single molecular wires. Grace, I. and Bailey, S. and Jefferson, J. and Lambert, C.

() Electron transport through single molecular wires. Materials Science, 22 (4). ISSN Full text not available from this repository. Cited by: 3. As functional elements in opto-electronic devices approach the singlemolecule Electron Transport in Single Molecular Wires book, conducting organic molecular wires are the appropriate interconnects that enable transport of charges and charge-like particles such as excitons within the device.

Reproducible syntheses and a thorough understanding of the underlying principles are therefore indispensable for applications like even smaller.

Electron Transport in Molecular Wire Junctions Abraham Nitzan1 and Mark A. Ratner2 Molecular conductance junctions are structures in which single molecules or small groups of molecules conduct electrical current between two electrodes. In such junc-tions, the connection between the molecule and the electrodes greatly affects the.

Electron transport is most efficient when the electron transmission probability via a molecule reaches %; the corresponding conductance is then 2e2/h (e is the charge of the electron and h is the Planck constant). This ideal conduction has been observed in a single metal atom and a string of metal atoms connected between two by:   The two simplest molecular transport junctions are wires made of either one single atom or a row of metal atoms.

Quantized conductance was observed on disordered metallic wires in ionic solution (Fig. 2) (17) (that is, the conductance exhibited steps near 4, 3, 2, 1, or 0 quantum units).

It was found that the intermolecular distance between single molecular units, the number of molecules connected in parallel as v as the interaction strength plays an important role for controlling the transport of electrons in molecule wire.

1) The HOMO-LUMO gap (HLG) of one single SAM unit is reduces when increasing N or decreasing d. 2) The (HLG) is a critical parameter for the molecular.

We have determined the conductance of alkane-linked ferrocene molecules with carboxylic acid anchoring groups using the STM break junction technique, and three sets of conductance values were found, i.e.

high conductance (HC), medium conductance (MC) and low conductance (LC) values. The enhancing effect of the incorporated ferrocene on the electron transport in saturated alkane molecular wires.

2 1 Introduction: Molecular Electronics and Molecular Wires bonded between two Au electrodes by the group of Reed et al.[4]andthe experimental demonstration of single-molecule rectification in an Aviram–Ratner type molecule by Metzger and coworkers [5].

The modulation of electron transport through molecular junctions is a prerequisite for realizing single-molecule electronic devices, which remains to be a big challenge.

In this work, an effective strategy using heteroatom substitution in the molecular backbone is carried out to tune the conductance of molecular. and meta-linked bridged biphenyl units in single molecular conductance measurements.

Scientific Reports, 7. 3- Modelling crown Ether molecular wires from experiment (to be submitted) 4- Carbon Nanotube based single molecule devices (to be submitted) 5- A comprehensive study of the electrical conductivity through flat stacked.

Nitzan, A. & Ratner, M. Electron transport in molecular wire junctions. Science– (). formed single molecular wires that extended from the Au{} substrate to about. We have studied electron transport through single redox molecules, perylene tetracarboxylic diimides, covalently bound to two gold electrodes via different linker groups, as a function of electrochemical gate voltage and temperature in different solvents.

The conductance of these molecules is sensitive to the linker groups because of different electronic coupling strengths between the. Figure \(\PageIndex{1}\): The electron transport chain: The electron transport chain is a series of electron transporters embedded in the inner mitochondrial membrane that shuttles electrons from NADH and FADH 2 to molecular oxygen.

In the process, protons are pumped from the mitochondrial matrix to the intermembrane space, and oxygen is. Molecular Wire. Molecular wires produced in this way by mimicking nature’s nanowires (Leys and Scrutton, ), have been investigated using a porphyrin-binding protein on an amyloid scaffold composed of two covalently fused proteins with differing propensities to aggregate (Baldwin et al., ).

single electron tunneling many-body state (Kondo effect) Measurement Bias voltage at T = mK V Coulomb blockade Electron transport governed by: tunneling processes - discrete electron charge - orbitals of the molecule - electron-electron interactions and many-body effects.

Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions. C Li 1,2, A Mishchenko 1, Z Li 1, I Pobelov 1,2, Th Wandlowski 1,2, X Q Li 3, F Würthner 3, A Bagrets 4,5 and F Evers 4,5.

Published 26 August • IOP Publishing Ltd Journal of Physics: Condensed Matter, Vol Number In this article, we have investigated the influence of the nitro side-group on the single molecular conductance of pyridine-based molecules by scanning tunneling microscopy break junction.

Single molecular conductance of 4,4′-bipyridine (BPY), 3-nitro(pyridinyl)pyridine (BPY-N), and 3-nitro(3-nitropyridinyl)pyridine (BPY-2N) were measured by contact with Au electrodes. T1 - Electron transport in molecular wire junctions. AU - Nitzan, Abraham. AU - Ratner, Mark A.

PY - /5/ Y1 - /5/ N2 - Molecular conductance junctions are structures in which single molecules or small groups of molecules conduct electrical current between two electrodes.

Similarly, Mirkin and Ratner have demonstrated electronic molecular wires that can transfer holes or electrons across active sites. It has been established, that the charge transfer that takes place across a molecular wire is the result of intramolecular electron transfer across the sites through the linking molecule.

The possibility of controlling electron transport in a single molecular junction represents the ultimate goal of molecular electronics. Here, we report that the modification of bridging group makes it possible to improve the performance and obtain new functions in a single cross-conjugated molecular junction, designed from a recently synthesized bipolar molecule bithiophene naphthalene diimide.Electron transport through single molecular wires () Pagina-navigatie: Main; Save publication.

Save as MODS; Export to Mendeley; Save as EndNote.probe electron transport through single conductive molecules (or molecular wires), such as electrode-molecule-electrode hetero-junctions, using, e.g., mechanical break junctions, 1 electro-migrated break junctions, 2 scanning nanoprobe microscopes 3,4 and.